Water Resources Research:
- Herman, J. D., Quinn, J. D., Steinschneider, S., Giuliani, M., & Fletcher, S. (2019). Climate adaptation as a control problem: Review and perspectives on dynamic water resources planning under uncertainty. Water Resources Research, e24389. https://doi.org/10.1029/2019WR025502
- Nguyen, H., Mehrotra, R., & Sharma, A. (2020). Assessment of Climate Change Impacts on Reservoir Storage Reliability, Resilience, and Vulnerability Using a Multivariate Frequency Bias Correction Approach. Water Resources Research, 56(2), e2019WR026022. https://doi.org/10.1029/2019WR026022
- Dell’Oca, A., Riva, M., & Guadagnini, A. (2020). Global Sensitivity Analysis for Multiple Interpretive Models with Uncertain Parameters. Water Resources Research, 56(2), e2019WR025754. https://doi.org/10.1029/2019WR025754
- Tajiki, M., Schoups, G., Hendricks Franssen, H. J., Najafinejad, A., & Bahremand, A. (2020). Recursive Bayesian estimation of conceptual rainfall‐runoff model errors in real‐time prediction of streamflow. Water Resources Research, 56(2), e2019WR025237. https://doi.org/10.1029/2019WR025237
- Niu, Y., Mostaghimi, P., Shabaninejad, M., Swietojanski, P., & Armstrong, R. T. (2020). Digital rock segmentation for petrophysical analysis with reduced user bias using convolutional neural networks. Water Resources Research, 56(2), e2019WR026597. https://doi.org/10.1029/2019WR026597
- Gelsinari, S., Doble, R., Daly, E., & Pauwels, V. R. (2020). Feasibility of Improving Groundwater Modeling by Assimilating Evapotranspiration Rates. Water Resources Research, 56(2), e2019WR025983. https://doi.org/10.1029/2019WR025983
- Alawadhi, A., & Tartakovsky, D. M. (2020). Bayesian Update and Method of Distributions: Application to Leak Detection in Transmission Mains. Water Resources Research. https://doi.org/10.1029/2019WR025879
- Wang, S., Taha, A. F., Sela, L., Giacomoni, M. H., & Gatsis, N. (2020). A New Derivative‐Free Linear Approximation for Solving the Network Water Flow Problem With Convergence Guarantees. Water Resources Research, 56(3). https://doi.org/10.1029/2019WR025694
- Zhang, J., Vrugt, J. A., Shi, X., Lin, G., Wu, L., & Zeng, L. Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems with a Kalman‐Inspired Proposal Distribution. Water Resources Research. https://doi.org/10.1029/2019WR025474
- Tran, V. N., Dwelle, M. C., Sargsyan, K., Ivanov, V. Y., & Kim, J. (2020). A novel modeling framework for computationally efficient and accurate real‐time ensemble flood forecasting with uncertainty quantification. Water Resources Research. https://doi.org/10.1029/2019WR025727
- Guo, D., Zheng, F., Gupta, H., & Maier, H. R. On the Robustness of Conceptual Rainfall‐Runoff Models to Calibration and Evaluation Dataset Splits Selection: A Large Sample Investigation. Water Resources Research. https://doi.org/10.1029/2019WR026752
- Siade, A. J., Cui, T., Karelse, R. N., & Hampton, C. (2020). Reduced‐Dimensional Gaussian Process Machine Learning for Groundwater Allocation Planning using Swarm Theory. Water Resources Research. https://doi.org/10.1029/2019WR026061
- Do, N. C., & Razavi, S. Correlation effects? A major but often neglected component in sensitivity and uncertainty analysis. Water Resources Research. https://doi.org/10.1029/2019WR025436
- Guillon, H., Byrne, C. F., Lane, B. A., Solis, S. S., & Pasternack, G. B. (2020). Machine Learning Predicts Reach‐Scale Channel Types from Coarse‐Scale Geospatial Data in a Large River Basin. Water Resources Research. https://doi.org/10.1029/2019WR026691
- Arshadi, M., De Paolis Kaluza, M. C., Miller, E. L., & Abriola, L. M. (2020). Subsurface Source Zone Characterization and Uncertainty Quantification Using Discriminative Random Fields. Water Resources Research, 56(3), e2019WR026481. https://doi.org/10.1029/2019WR026481
- Bhowmik, R. D., Ng, T. L., & Wang, J. P. (2019). Understanding the impact of observation data uncertainty on probabilistic streamflow forecasts using a dynamic hierarchical model. Water Resources Research. https://doi.org/10.1029/2019WR025463
- Spear, R. C., Cheng, Q., & Wu, S. L. (2020). An Example of Augmenting Regional Sensitivity Analysis Using Machine Learning Software. Water Resources Research. https://doi.org/10.1029/2019WR026379
Environmental Modelling and Software:
- Douglas-Smith, D., Iwanaga, T., Croke, B. F., & Jakeman, A. J. (2020). Certain trends in uncertainty and sensitivity analysis: An overview of software tools and techniques. Environmental Modelling and Software, 124, 104588. https://doi.org/10.1016/j.envsoft.2019.104588
- Pianosi, F., Sarrazin, F., & Wagener, T. (2020). How successfully is open-source research software adopted? Results and implications of surveying the users of a sensitivity analysis toolbox. Environmental Modelling & Software, 124, 104579. https://doi.org/10.1016/j.envsoft.2019.104579
- Jang, W. S., Engel, B., & Yeum, C. M. (2020). Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environmental Modelling & Software, 124, 104602. https://doi.org/10.1016/j.envsoft.2019.104602
- Barton, D. N., Sundt, H., Bustos, A. A., Fjeldstad, H. P., Hedger, R., Forseth, T., … & Madsen, A. L. (2020). Multi-criteria decision analysis in Bayesian networks-Diagnosing ecosystem service trade-offs in a hydropower regulated river. Environmental Modelling & Software, 124, 104604. https://doi.org/10.1016/j.envsoft.2019.104604
- Zhang, Y., Arabi, M., & Paustian, K. (2020). Analysis of parameter uncertainty in model simulations of irrigated and rainfed agroecosystems. Environmental Modelling & Software, 126, 104642. https://doi.org/10.1016/j.envsoft.2020.104642
- Mustafa, S. M. T., Nossent, J., Ghysels, G., & Huysmans, M. (2020). Integrated Bayesian Multi-model approach to quantify input, parameter and conceptual model structure uncertainty in groundwater modeling. Environmental Modelling & Software, 126, 104654. https://doi.org/10.1016/j.envsoft.2020.104654
- Su, Y., Kern, J. D., Denaro, S., Hill, J., Reed, P., Sun, Y., … & Characklis, G. W. (2020). An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes. Environmental Modelling & Software, 126, 104667. https://doi.org/10.1016/j.envsoft.2020.104667
Hydrology and Earth System Sciences:
- Alam, M. S., Barbour, S. L., and Huang, M.: Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions, Hydrol. Earth Syst. Sci., 24, 735–759, https://doi.org/10.5194/hess-24-735-2020, 2020.
- Gallart, F., von Freyberg, J., Valiente, M., Kirchner, J. W., Llorens, P., and Latron, J.: Technical note: An improved discharge sensitivity metric for young water fractions, Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, 2020.
- Jachens, E. R., Rupp, D. E., Roques, C., and Selker, J. S.: Recession analysis revisited: impacts of climate on parameter estimation, Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, 2020.
Journal of Hydrology:
- Qi, W., Liu, J., Xia, J., & Chen, D. (2020). Divergent sensitivity of surface water and energy variables to precipitation product uncertainty in the Tibetan Plateau. Journal of Hydrology, 581, 124338. https://doi.org/10.1016/j.jhydrol.2019.124338
- Li, Y., Hernandez, J. H., Aviles, M., Knappett, P. S., Giardino, J. R., Miranda, R., … & Morales, J. (2020). Empirical Bayesian Kriging method to evaluate inter-annual water-table evolution in the Cuenca Alta del Río Laja aquifer, Guanajuato, México. Journal of Hydrology, 582, 124517. https://doi.org/10.1016/j.jhydrol.2019.124517
- Yuan, L., He, W., Degefu, D. M., Liao, Z., Wu, X., An, M., … & Ramsey, T. S. (2020). Transboundary water sharing problem; a theoretical analysis using evolutionary game and system dynamics. Journal of Hydrology, 582, 124521. https://doi.org/10.1016/j.jhydrol.2019.124521
- Haro-Monteagudo, D., Palazón, L., & Beguería, S. (2020). Long-term Sustainability of Large Water Resource Systems under Climate Change: a Cascade Modeling Approach. Journal of Hydrology, 124546. https://doi.org/10.1016/j.jhydrol.2020.124546
- Lee, S., Yen, H., Yeo, I. Y., Moglen, G. E., Rabenhorst, M. C., & McCarty, G. W. (2020). Use of multiple modules and Bayesian Model Averaging to assess structural uncertainty of catchment-scale wetland modeling in a Coastal Plain landscape. Journal of Hydrology, 124544. https://doi.org/10.1016/j.jhydrol.2020.124544
- Wang, Y., Li, Z., Guo, S., Zhang, F., & Guo, P. (2020). A risk-based fuzzy boundary interval two-stage stochastic water resources management programming approach under uncertainty. Journal of Hydrology, 124553. https://doi.org/10.1016/j.jhydrol.2020.124553
Latest Publications on ‘Hydrologic Uncertainty’ – April 2020
Das ist wirklich interessant. Sie sind ein sehr erfahrener Blogger. Ich bin Ihrem RSS-Feed beigetreten und freue mich darauf, mehr von Ihrem wunderbaren Beitrag zu erhalten. Außerdem habe ich Ihre Website in meinen sozialen Netzwerken geteilt! Marietta Desmund Dick
You have noted very interesting details ! ps decent website. Adelaida Robby Dorolisa