Water Resources Research:
- Prieto, C., Le Vine, N., Kavetski, D., García, E., & Medina, R. (May 2019). Flow prediction in ungauged catchments using probabilistic random forests regionalization and new statistical adequacy tests. Water Resources Research, 55, 4364– 4392. https://doi.org/10.1029/2018WR023254
- Zhao, Q., Cai, X., & Li, Y. (May 2019). Determining inflow forecast horizon for reservoir operation. Water Resources Research, 55, 4066– 4081. https://doi.org/10.1029/2019WR025226
- Camacho Suarez, V. V., Schellart, A. N. A., Brevis, W., & Shucksmith, J. D. (May 2019). Quantifying the impact of uncertainty within the longitudinal dispersion coefficient on concentration dynamics and regulatory compliance in rivers. Water Resources Research, 55, 4393– 4409. https://doi.org/10.1029/2018WR023417
- Taner, M. Ü., Ray, P., & Brown, C. (May 2019). Incorporating multidimensional probabilistic information into robustness‐based water systems planning. Water Resources Research, 55, 3659– 3679. https://doi.org/10.1029/2018WR022909
- Mo, S., Zabaras, N., Shi, X., & Wu, J. (May 2019). Deep autoregressive neural networks for high‐dimensional inverse problems in groundwater contaminant source identification. Water Resources Research, 55, 3856– 3881. https://doi.org/10.1029/2018WR024638
- Ilampooranan, I., Van Meter, K. J., & Basu, N. B. (May 2019). A race against time: Modeling time lags in watershed response. Water Resources Research, 55, 3941– 3959. https://doi.org/10.1029/2018WR023815
- Baran, S., Hemri, S., & El Ayari, M. (May 2019). Statistical postprocessing of water level forecasts using Bayesian model averaging with doubly truncated normal components. Water Resources Research, 55, 3997– 4013. https://doi.org/10.1029/2018WR024028
- Meriö, L.‐J., Ala‐aho, P., Linjama, J., Hjort, J., Kløve, B., & Marttila, H. (May 2019). Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments. Water Resources Research, 55, 4096– 4109. https://doi.org/10.1029/2018WR023031
- Zhi, W., Li, L., Dong, W., Brown, W., Kaye, J., Steefel, C., & Williams, K. H. (May 2019). Distinct source water chemistry shapes contrasting concentration‐discharge patterns. Water Resources Research, 55, 4233– 4251. https://doi.org/10.1029/2018WR024257
- Bierkens, M. F. P., Reinhard, S., Bruijn, J. A., Veninga, W., & Wada, Y. (May 2019). The shadow price of irrigation water in major groundwater‐depleting countries. Water Resources Research, 55, 4266– 4287. https://doi.org/10.1029/2018WR023086
- Schaperow, J. R., Li, D., Margulis, S. A., & Lettenmaier, D. P. (May 2019). A curve‐fitting method for estimating bathymetry from water surface height and width. Water Resources Research, 55, 4288– 4303. https://doi.org/10.1029/2019WR024938
- Khan, H. F., & Brown, C. M. (May 2019). Effect of hydrogeologic and climatic variability on performance of a groundwater market. Water Resources Research, 55, 4304– 4321. https://doi.org/10.1029/2018WR024180
- Dobson, B., Wagener, T., & Pianosi, F. (2019). How important are model structural and contextual uncertainties when estimating the optimized performance of water resource systems? Water Resources Research, 55, 2170–2193. https://doi.org/10.1029/2018WR024249
- Nijzink, R. C., Almeida, S., Pechlivanidis, I. G., Capell, R., Gustafssons, D., Arheimer, B., et al. (2018). Constraining conceptual hydrological models with multiple information sources. Water Resources Research, 54, 8332–8362. https://doi.org/10.1029/2017WR021895
Environmental Modelling and Software:
- Jaxa-Rozen, M., Kwakkel, J. H., & Bloemendal, M. (May 2019). A coupled simulation architecture for agent-based/geohydrological modelling with NetLogo and MODFLOW. Environmental Modelling & Software, 115, 19-37. https://doi.org/10.1016/j.envsoft.2019.01.020
- Härkönen, Sanna, Mathias Neumann, Volker Mues, Frank Berninger, Karol Bronisz, Giuseppe Cardellini, Gherardo Chirici et al. “A climate-sensitive forest model for assessing impacts of forest management in Europe.” Environmental Modelling & Software, 115 (May 2019): 128-143. https://doi.org/10.1016/j.envsoft.2019.02.009
- Shelia, V., Hansen, J., Sharda, V., Porter, C., Aggarwal, P., Wilkerson, C. J., & Hoogenboom, G. (May 2019). A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environmental Modelling & Software, 115, 144-154. https://doi.org/10.1016/j.envsoft.2019.02.006
- Sandric, I., Ionita, C., Chitu, Z., Dardala, M., Irimia, R., & Furtuna, F. T. (May 2019). Using CUDA to accelerate uncertainty propagation modelling for landslide susceptibility assessment. Environmental Modelling & Software, 115, 176-186. https://doi.org/10.1016/j.envsoft.2019.02.016
Hydrology and Earth System Sciences:
- Mustafa, S. M. T., Hasan, M. M., Saha, A. K., Rannu, R. P., Uytven, E. V., Willems, P., & Huysmans, M. (May 2019). Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios. Hydrology and Earth System Sciences, 23(5), 2279-2303. https://doi.org/10.5194/hess-23-2279-2019
Journal of Hydrology:
- Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (May 2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17-31. https://doi.org/10.1016/j.jhydrol.2019.02.034
- Bonakdari, H., Zaji, A. H., Binns, A. D., & Gharabaghi, B. (May 2019). Integrated Markov chains and uncertainty analysis techniques to more accurately forecast floods using satellite signals. Journal of Hydrology, 572, 75-95. https://doi.org/10.1016/j.jhydrol.2019.02.027
- Höge, M., Guthke, A., & Nowak, W. (May 2019). The hydrologist’s guide to Bayesian model selection, averaging and combination. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.01.072
- Li, W., Lin, K., Zhao, T., Lan, T., Chen, X., Du, H., & Chen, H. (May 2019). Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.002
- Sun, X., Xiang, Y., Shi, Z., Hu, X., & Zhang, H. (May 2019). Sensitivity of the response of well-aquifer systems to different periodic loadings: A comparison of two wells in Huize, China. Journal of Hydrology, 572, 121-130. https://doi.org/10.1016/j.jhydrol.2019.02.029
- Mohammadi, Z., & Illman, W. A. (May 2019). Detection of karst conduit patterns via hydraulic tomography: A synthetic inverse modeling study. Journal of Hydrology, 572, 131-147. https://doi.org/10.1016/j.jhydrol.2019.02.044
- Lin, C. C., Liou, K. Y., Lee, M., & Chiueh, P. T. (May 2019). Impacts of urban water consumption under climate change: An adaptation measure of rainwater harvesting system. Journal of Hydrology, 572, 160-168. https://doi.org/10.1016/j.jhydrol.2019.02.032
- Chen, F., Shang, H., Panyushkina, I. P., Meko, D. M., Yu, S., Yuan, Y., & Chen, F. (May 2019). Tree-ring reconstruction of Lhasa River streamflow reveals 472 years of hydrologic change on southern Tibetan Plateau. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.02.054
- Sharma, S., & Mujumdar, P. P. (May 2019). On the relationship of daily rainfall extremes and local mean temperature. Journal of Hydrology, 572, 179-191. https://doi.org/10.1016/j.jhydrol.2019.02.048
- Silvestro, F., Rossi, L., Campo, L., Parodi, A., Fiori, E., Rudari, R., & Ferraris, L. (May 2019). Impact-based flash-flood forecasting system: Sensitivity to high resolution numerical weather prediction systems and soil moisture. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.02.055
- Rezaie-Balf, M., Kim, S., Fallah, H., & Alaghmand, S. (2019). Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: Application on the perennial rivers in Iran and South Korea. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.046
- Wang, K., Liu, X., Tian, W., Li, Y., Liang, K., Liu, C., … & Yang, X. (2019). Pan coefficient sensitivity to environment variables across China. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.039
- Brunner, M. I., & Sikorska, A. E. (2019). Dependence of flood peaks and volumes in modeled discharge time series: effect of different uncertainty sources. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.03.024
Hydrological Sciences Journal:
- Twenty-three Unsolved Problems in Hydrology (UPH) – a community perspective – https://www.tandfonline.com/doi/full/10.1080/02626667.2019.1620507
- Uncertainty in stage–discharge rating curves: application to Australian Hydrologic Reference Stations data – https://www.tandfonline.com/doi/full/10.1080/02626667.2019.1577555
Earth-Science Reviews
- Wagener, T. and Pianosi, F. (2019). What has Global Sensitivity Analysis ever done for us? A systematic review to support scientific advancement and to inform policy-making in earth system modelling. Earth-Science Reviews, 194, 1-18. https://doi.org/10.1016/j.earscirev.2019.04.006
Latest Publications on ‘Hydrologic Uncertainty’ – May 2019